Statistics(1)-Chapter 2 敍述統計 (圖表法)

李水彬

Chien Hsin University of Science and Technology

2014.02

- 1緒論2資料的型態
 - ■變數的屬性
- 衡量的尺度
 - ■四種尺度
 - 衡量尺度與四則運算的 關係
- 次數分配表

- 屬質資料的整理
- 何時使用柏拉圖?
- 繪製柏拉圖的程序
- 屬量資料的整理
- 直方圖
- 史塔基法則 (Sturge's rule)
- 時間序列圖

■ 數據中萃取出有用的資訊是統計學的主要目的。

- ■數據中萃取出有用的資訊是統計學的主要目的。
- 統計分析的首要就是整理數據, 整理的目的呈現 有意義的數據結構, 表現出數據分配的情形。

- ■數據中萃取出有用的資訊是統計學的主要目的。
- 統計分析的首要就是整理數據, 整理的目的呈現 有意義的數據結構, 表現出數據分配的情形。
- 分配乃指各種觀察數據發生的相對頻率, 它表現 出整筆數據關於研究主體的資訊內容。

- ■數據中萃取出有用的資訊是統計學的主要目的。
- 統計分析的首要就是整理數據, 整理的目的呈現 有意義的數據結構, 表現出數據分配的情形。
- 分配乃指各種觀察數據發生的相對頻率, 它表現 出整筆數據關於研究主體的資訊內容。
- 簡單說, 分配就是描述各種可能情況出現的機會 或比例。

Table: 晶圓氧化層的沉積厚度

1516	1512	1472	1449	1533	1505	1501	1500
1455	1554	1448	1462	1482	1412	1500	1568
1470	1509	1460	1483	1428	1427	1425	1517
1460	1512	1543	1488	1513	1385	1601	1470
1459	1451	1569	1484	1548	1520	1474	1566
1483	1547	1379	1461	1469	1495	1465	1614
1546	1461						

調查30位手機使用者的手機品牌如下: HTC, iPhone, HTC, iPhone, Samsung, HTC, Samsung, iPhone, Samsung, Sony, Samsung, Sony, iPhone, Nokia, iPhone, Sony, Asus, HTC, Huawei, HTC, iPhone, Blackberry, Blackberry, Sony, HTC, Huawei, Samsung, Samsung, iPhone 變數爲項目名稱, 病患在變數右邊空格的塡答內容稱爲變量。依據病患可能塡答變量的性質, 可區分爲

■ 屬質變數(qualitative variable);

變數爲項目名稱, 病患在變數右邊空格的塡答內容稱爲變量。依據病患可能塡答變量的性質, 可區分爲

- 屬質變數(qualitative variable);
- 屬量變數(quantitative variable)。

Table: 醫院初診病患資料表

姓名	生日	性別
血型	身高	體重
體溫	血壓 (高)	血壓 (低)
居住地	聯絡電話	
學歷	職業	婚姻狀況

■ 我的血型是 AB 型, 身高175公分。血型, 身高為變數, AB 型, 175公分為變量。

- 我的血型是 AB 型, 身高175公分。血型, 身高為變數, AB 型, 175公分為變量。
- 今天就診人數爲 79 人, 人數爲變數, 79 人爲變量。

- 我的血型是 AB 型, 身高175公分。血型, 身高為變數, AB 型, 175公分為變量。
- 今天就診人數爲 79 人, 人數爲變數, 79 人爲變量。
- 我的手機品牌為 xCall, 他的手機品牌為 yNet, 品牌為變數, 變量為 xCall 和 yNet。

Statistics(1)-Chapter 2 敍述統計 (圖表法) 上 資料的型態 上 變數的屬性 □變數的屬性

■ 屬質變數:『質』就是性質的意思,所謂性質就是 與他人不同的特性,以作爲區分之用。其目的僅 於分類,故又稱爲類別資料 (categorical data)。 └─變數的屬性

- **屬質變數**:『質』就是性質的意思,所謂性質就是 與他人不同的特性,以作爲區分之用。其目的僅 於分類,故又稱爲類別資料 (categorical data)。
- 屬量變數: 『量』有數量的意思, 數量可增減, 有 多有少。量的資料爲衡量個體在一個變數上擁有 的多寡、大小。表 2 中, 身高、體重、體溫、血壓 等皆爲屬量變數。

屬質變數與變量:

■ 血型有 O, A, B 和 AB 型之別。

屬質變數與變量:

- 血型有 O, A, B 和 AB 型之別。
- 婚姻狀況分成已婚與未婚之別。

屬質變數與變量:

- 血型有 O, A, B 和 AB 型之別。
- 婚姻狀況分成已婚與未婚之別。
- 學歷有小學, 國中, 高中, 大學, 研究所以上之別。

其他常遇到的類別變數有宗教信仰,種族膚色,政治傾向等等。

屬量變數分成:

■ <mark>離散型變數。</mark>離散型變數的變量爲計數型資料, 紀錄某一種特性發生的次數。

屬量變數分成:

- <mark>離散型變數。</mark>離散型變數的變量爲計數型資料, 紀錄某一種特性發生的次數。
- 連續型變數。非計數型資料的屬量變數為連續型變數。連續者,接續不斷之意,是一個極為抽象的概念。量測實體不能被切割成一些最小單位的組成。

屬質變數與變量

■ 離散型變數: 班上人數50人, 缺曠人數10人, 不良品個數6個, 某日車禍發生次數4次, 死亡人數, 新生兒人數等等。又稱爲計數型變數。

屬質變數與變量

- 離散型變數:班上人數50人,缺曠人數10人,不 良品個數6個,某日車禍發生次數4次,死亡人數, 新生兒人數等等。又稱爲計數型變數。
- **連續型變數**: 王大明身高170.2公分、體重67.2 公斤, 高血壓 120 毫米汞柱等。

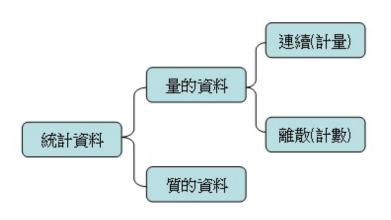


Figure: 統計資料的型態

└─變數的屬性

一些說明與釐清

■ 變數屬性可以轉變。居住地點是屬性資料,但也 有距離的意義,距離是一種屬量變數。 □變數的屬性

一些說明與釐清

- 變數屬性可以轉變。居住地點是屬性資料,但也 有距離的意義,距離是一種屬量變數。
- 分不清的連續與離散。 考試成績是離散還是連續?

└─變數的屬性

一些說明與釐清

- **變數屬性可以轉變**。居住地點是屬性資料,但也 有距離的意義,距離是一種屬量變數。
- 分不清的連續與離散。 考試成績是離散還是連續?
- 連續或離散不是很重要。

名目尺度:

此變量尺度旨在區分不同。此種尺度是一種群體上的分類,將群體分成數個"互斥"子群體的衡量方式,即稱爲名目尺度。差異性的辨識。

Example

■性別有男和女之分。

名目尺度:

此變量尺度旨在區分不同。此種尺度是一種群體上的分類,將群體分成數個"互斥"子群體的衡量方式,即稱爲名目尺度。差異性的辨識。

Example

- 性別有男和女之分。
- 宗教信仰分成基督, 天主, 佛教, 回教, 道教;

名目尺度:

此變量尺度旨在區分不同。此種尺度是一種群體上的 分類,將群體分成數個"互斥"子群體的衡量方式, 即稱爲名目尺度。差異性的辨識。

Example

- 性別有男和女之分。
- 宗教信仰分成基督, 天主, 佛教, 回教, 道教;
- 膚色有棕, 黑, 白和紅等區別。

順序尺度:

除了分辨不同外, 更呈現"程度"上的差異, 等級上的不同。順序尺度具有名目尺度的用途, 而名目尺度無法轉換成順序尺度。

Example

■ 教育程度: 國小, 國中, · · · 等程度上的差異。

順序尺度:

除了分辨不同外, 更呈現"程度"上的差異, 等級上的不同。順序尺度具有名目尺度的用途, 而名目尺度無法轉換成順序尺度。

Example

- 教育程度: 國小, 國中, · · · 等程度上的差異。
- 如問卷調查的滿意度也是一種順序尺度,常分成非常滿意,滿意,普通,不滿意,非常不滿意。

順序尺度:

除了分辨不同外, 更呈現"程度"上的差異, 等級上的不同。順序尺度具有名目尺度的用途, 而名目尺度無法轉換成順序尺度。

Example

- 教育程度: 國小, 國中, · · · 等程度上的差異。
- 如問卷調查的滿意度也是一種順序尺度,常分成 非常滿意,滿意,普通,不滿意,非常不滿意。
- 證照分成甲級, 乙級, 丙級。

區間尺度:

可以表現"變化量"的尺度,除了保有順序尺度的資訊,更把差異的程度數量化。

區間尺度相對的差異性可以進行比較,它的特點是變量的零點是人爲訂定的參考點,而非實際上具有"零,無"的意義。

Example

溫度 $0^{\circ}C = 32^{\circ}F$, 並非沒有溫度。

比例尺度:

可以表現個體在這個變數擁有數量的尺度。比例尺度描述絕對性的差異,零點就是代表無,空無一物。長度爲零,體重爲零都是無的概念。

比例尺度與區間尺度的差別為區間尺度只有相對差異 大小有意義,變量的零點是人為訂定的一個相對參考 座標。如溫度為零並非沒有溫度,零只是一個參考原 點。

Example

■ 身高160公分=1.60公尺。0公分=0公尺。

Example

- 身高160 公分=1.60 公尺。0公分=0公尺。
- 200公分是100公分的兩倍, 但20° C 不是10° C的 兩倍。

尺度的精細程度

比例尺度~區間尺度~順序尺度~名目尺度

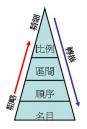


Figure: 尺度精細程度與可轉換方向

Table: 常用變數的衡量尺度

衡量尺度	常見例子
名目尺度	姓名、血型、宗教信仰、膚色、
	婚姻狀況、職業
順序尺度	滿意度、敎育程度、等級
區間尺度	溫度、西元年
比例尺度	身高、體重、時間、壓力、次數、
	個數、人數

└─衡量尺度與四則運算的關係

■ 名目和順序尺度沒有量的意義, 故在資料處理上, 不能使用加減乘除四則運算。

- 名目和順序尺度沒有量的意義, 故在資料處理上, 不能使用加減乘除四則運算。
- 區間尺度沒有絕對的原點. 故無法以『比』值描 述數字間的關係, 換言之, 不能做『乘除』的運 算。

整理資料的目的: 呈現資料分配的型態。

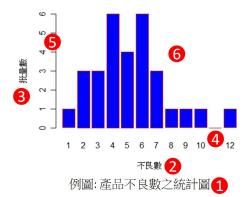


Figure: 一個說明統計圖結構的例子

- 圖形的標題: 說明圖形的主題, 習慣上擺在最下 面。
- X 軸的變數名稱。
- Y 軸的變數名稱。
- X 軸的變數的類別名稱或數值刻度。
- Y 軸的變數的刻度。(常須註明單位, 或者特殊尺度)。
- ■圖形本體。

Figure: 兒時戳戳樂。(左) 戳戳樂外觀 (右) 內容物(水果掛環)

一次數分配表

└屬質資料的整理

Table: 掛環種類的次數分配表

吊飾種類		2	Ğ	*	6	合計
個數	10	8	8	5	4	35

相對次數 =
$$\frac{次數}{合計次數} \times 100\%$$
 (1)

Table: 掛環種類的次數與相對次數表

吊飾種類		1	O	*	1	合計
個數	10	8	8	5	4	35
相對次數	0.29	0.23	0.23	0.14	0.11	1.0

└ 屬質資料的整理

Example

銅板出現正面紀錄爲1, 出現反面紀錄爲0。以下是投擲一個五元銅板 100 次的結果:

Question: 可以馬上看出哪一種結果比較多?

一次數分配表

└屬質資料的整理

Table: 銅板實驗的次數分配表

結果	次數	相對次數
正面 (=1)	59	0.59
反面 (=0)	41	0.41
合計	100	1.00

└屬質資料的整理

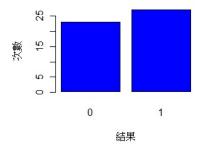


Figure: 100次投擲結果的次數分配圖

Example

Table: 血型次數分配

血型	次數	相對次數
Α	80	20.8
В	74	19.3
AB	48	12.5
О	176	45.8
未知	6	1.6
合計	384	100.0

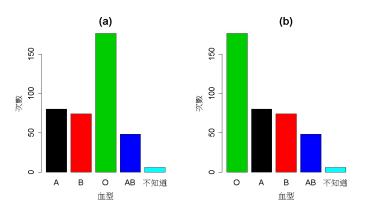


Figure: 健行科技大學(2008) 學生血型分配 (a) 次數分配圖 (b) 柏拉圖

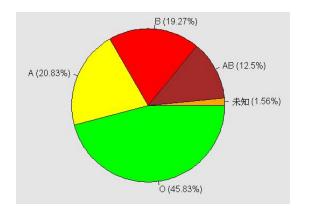


Figure: 血型分配的圓形圖

圓形圖可以方便看出主要項目占整體的比例。

Example

─屬質資料的整理

得來送 Pizza 蒐集1至4月外送客戶對餐飲服務的抱怨項目, 統計如表 8:

Table: 客戶抱怨次數分配表

冷掉了	85	地址錯誤	37
遲到	53	包裝不良	31
數量錯誤	53	訂單錯誤	17
少放香料	44	少放贈品	10
烤焦	40	其他	13

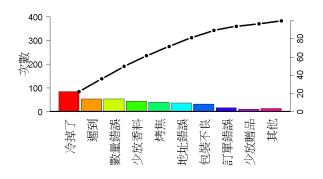


Figure: 得來送顧客抱怨原因的柏拉圖

■ 柏拉圖是 品管七大手法之一, 通常很少單獨使用。通常必須結合 特性要因圖, 查檢表等問題分析與資料收集方法。

- 柏拉圖是 品管七大手法之一, 通常很少單獨使用。通常必須結合 特性要因圖, 查檢表等問題分析與資料收集方法。
- 在尋找改善方案過程中,柏拉圖屬資料收集完成 之後的階段工作,用於指出影響製程或產品品質 的重要原因。

- 柏拉圖是 品管七大手法之一, 通常很少單獨使用。通常必須結合 特性要因圖, 查檢表等問題分析與資料收集方法。
- 在尋找改善方案過程中,柏拉圖屬資料收集完成 之後的階段工作,用於指出影響製程或產品品質 的重要原因。
- 針對特定製程, 若存在很多影響因素, 當要釐清 各種製程問題出現的頻率時, 並專注對於重要問 題提出改善方案時, 柏拉圖是很好的方法。

└繪製柏拉圖的程序

■ 決定問題變數的分類項目,可用到腦力激盪小組 分析,繪製特性要因圖等方法協助釐清。

- ▶決定問題變數的分類項目,可用到腦力激盪小組 分析,繪製特性要因圖等方法協助釐清。
- ▶ 決定合適量測的方法與統計。通常可以記錄發生 頻率,成本損失和時間延遲等。

- ▶ 決定問題變數的分類項目,可用到腦力激盪小組 分析,繪製特性要因圖等方法協助釐清。
- 決定合適量測的方法與統計。通常可以記錄發生 頻率,成本損失和時間延遲等。
- 決定資料收集時間, 一天, 一周或是一個工作項目完成期間。

- ▶ 決定問題變數的分類項目,可用到腦力激盪小組分析,繪製特性要因圖等方法協助釐清。
- 決定合適量測的方法與統計。通常可以記錄發生 頻率,成本損失和時間延遲等。
- 決定資料收集時間, 一天, 一周或是一個工作項目完成期間。
- 收集資料, 紀錄資料發生時間。

- ▶決定問題變數的分類項目,可用到腦力激盪小組 分析,繪製特性要因圖等方法協助釐清。
- ▶ 決定合適量測的方法與統計。通常可以記錄發生 頻率,成本損失和時間延遲等。
- 決定資料收集時間, 一天, 一周或是一個工作項目完成期間。
- 收集資料, 紀錄資料發生時間。
- ■分析資料。

- ▶ 決定問題變數的分類項目,可用到腦力激盪小組分析,繪製特性要因圖等方法協助釐清。
- 決定合適量測的方法與統計。通常可以記錄發生 頻率,成本損失和時間延遲等。
- ▶ 決定資料收集時間,一天,一周或是一個工作項目完成期間。
- 收集資料, 紀錄資料發生時間。
- ■分析資料。
- 使用 PEDA 繪製 Pareto Chart.

□屬量資料的整理

屬量資料分成離散型與連續型兩種,

■離散型又爲計數型,僅需統計每一種次數發生頻率。

└屬量資料的整理

屬量資料分成離散型與連續型兩種,

- ■離散型又爲計數型,僅需統計每一種次數發生頻率。
- 連續型資料則使用分段區間統計方法, 紀錄每一段區間內發生的次數以呈現數據分配的情形。

- 次数分配表 └ 屬量資料的整理

Example

某工廠檢測50批產品,每批不良品數量紀錄如下

Table: 不良品個數的次數分配表

不良數	畫記	次數	累積次數
0		2	2
1		9	11
2		15	26
3		11	37
4		3	40
5		6	46
6		3	49
7		1	50
合計		50	

Table: 不良品個數的次數與累積分配表

不白	次	累積	相對	累積相對
11.10				
數	數	次數	次數 (%)	次數 (%)
0	2	2	4	4
1	9	11	18	22
2	15	26	30	52
3	11	37	22	74
4	3	40	6	80
5	6	46	12	92
6	3	49	6	98
7	1	50	2	100
合計	50	100		

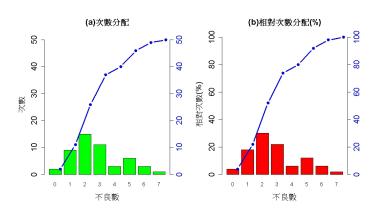


Figure: 不良品的次數分配圖

直方圖是用來展現連續型變數的數據分配,製作程序 是**先完成次數分配表後再繪製直方圖**。

製作次數分配表:

■ 從數據中, 找出最大數據 (*Max*) 與最小數據 (*Min*) 來。

- 從數據中, 找出最大數據 (*Max*) 與最小數據 (*Min*) 來。
- 計算數據的全距 R = Max Min。

- 從數據中, 找出最大數據 (*Max*) 與最小數據 (*Min*) 來。
- 計算數據的全距 R = Max Min。
- 決定適當組數 k (5 ~ 20), 與組距 h 。注意: $k \times h > R$ 。

- 從數據中, 找出最大數據 (*Max*) 與最小數據 (*Min*) 來。
- 計算數據的全距 R = Max Min。
- 決定適當組數 k (5 ~ 20), 與組距 h 。注意: $k \times h > R$ 。
- 求出最小組的下組界 $s_1 \leq Min$,即最小組的下組界必須小於或等於 Min。

- 從數據中, 找出最大數據 (*Max*) 與最小數據 (*Min*) 來。
- 計算數據的全距 R = Max Min。
- 決定適當組數 k (5 ~ 20), 與組距 h 。注意: $k \times h > R$ 。
- 求出最小組的下組界 $s_1 \leq Min$,即最小組的下組界必須小於或等於 Min。
- 算出每一組之下組界 $s_i = s_{i-1} + h$ 與上組界 $l_i = s_i + h, i = 1, 2, \dots, k$ 。檢查是否最大值是否 落在最後一組內? 如果不是, 必須調整最小組的 下組界或組距。

■ 計算各組的組中點 $m_i = s_i + h/2$, $i = 1, 2, \dots, k$ 。

- 計算各組的組中點 $m_i = s_i + h/2$, $i = 1, 2, \dots, k$ 。
- ■將數據畫記於表內。

- 計算各組的組中點 $m_i = s_i + h/2$, $i = 1, 2, \dots, k$ 。
- ■將數據畫記於表內。
- 合計次數是否正確?

■横坐標刻度與變數名稱。

- ■横坐標刻度與變數名稱。
- 縱座標刻度與變數名稱 (次數或相對次數)。

- ■横坐標刻度與變數名稱。
- 縱座標刻度與變數名稱 (次數或相對次數)。
- 直方圖主體。每一個長條必須緊密相接,不可以 存有空隙。

- ■横坐標刻度與變數名稱。
- 縱座標刻度與變數名稱 (次數或相對次數)。
- 直方圖主體。每一個長條必須緊密相接,不可以 存有空隙。
- 圖形說明, 通常列於底部。

Example 製作次數分配表

1516	1512	1472	1449	1533	1505	1501	1500
1455	1554	1448	1462	1482	1412	1500	1568
1470	1509	1460	1483	1428	1427	1425	1517
1460	1512	1543	1488	1513	1385	1601	1470
1459	1451	1569	1484	1548	1520	1474	1566
1483	1547	1379	1461	1469	1495	1465	1614
1546	1461						

Table: 次數分配

組				累積	相對	累積相對
別	範圍	組中點	次數	次數	次數(%)	次數(%)
1	1360~1400	1380	2	2	4	4
2	$1400{\sim}1440$	1420	4	6	8	12
3	$1440{\sim}1480$	1460	16	22	32	44
4	$1480{\sim}1520$	1500	17	39	34	78
5	$1520{\sim}1560$	1540	6	45	12	90
6	$1560{\sim}1600$	1580	3	48	6	96
7	$1600{\sim}1640$	1620	2	50	4	100
合計			50		100	

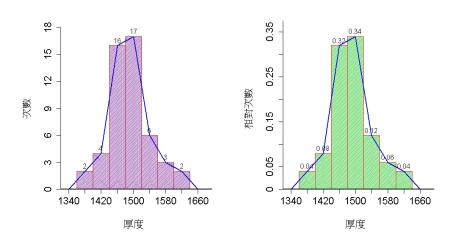


Figure: 沉積厚度的次數分配圖

L_{直方圖}

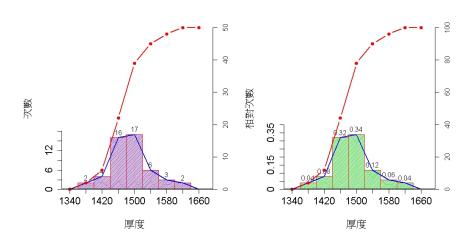


Figure: 沉積厚度的相對次數分配圖

史塔基法則 (Sturge's rule)

假設一組資料的個數為 n, 次數分配表的組數k為

$$k = \lceil 1 + log_2(n) \rceil = \lceil 1 + 3.32 log_{10}(n) \rceil$$

定義 [x] 爲大於或等於x的最小整數。例如:

■
$$[3.9] = 4$$

史塔基法則 (Sturge's rule)

假設一組資料的個數為 n, 次數分配表的組數k為

$$k = \lceil 1 + log_2(n) \rceil = \lceil 1 + 3.32 log_{10}(n) \rceil$$

定義 [x] 爲大於或等於x的最小整數。例如:

- **■** [3.9] = 4
- **■** [4.1] = 5

Example

利用史塔基法則求樣本大小為 n=100 和 n=200應分組數。

■
$$n = 100, k = \lceil 1 + log_2(100) \rceil = \lceil 7.64 \rceil = 8$$
 o

Example

利用史塔基法則求樣本大小為 n = 100 和 n = 200 應分組數。

■
$$n = 100, k = \lceil 1 + log_2(100) \rceil = \lceil 7.64 \rceil = 8$$
 。

■
$$n = 200, k = \lceil 1 + log_2(200) \rceil = \lceil 8.64 \rceil = 9$$
 。

根據史塔基法則,資料量增加1倍,組數加1。

Example

Table: 新生兒體重 kg

2.03	2.21	2.29	2.43	2.44	2.51	2.54	2.54	2.55	2.61
2.62	2.63	2.64	2.64	2.66	2.69	2.70	2.71	2.72	2.80
2.80	2.82	2.87	2.88	2.88	2.90	2.92	2.93	2.96	3.02
3.02	3.03	3.04	3.04	3.05	3.08	3.12	3.15	3.16	3.16
3.17	3.21	3.22	3.23	3.24	3.27	3.30	3.33	3.37	3.38
3.40	3.45	3.46	3.46	3.49	3.53	3.55	3.56	3.61	3.68
3.70	3.71	3.72	3.88	4.20					

一次數分配表

└─史塔基法則 (Sturge's rule)

■ *Max* = 4.20與*Min* = 2.03。

- Max = 4.20與Min = 2.03。
- R = Max Min = 4.20 2.03 = 2.17

- Max = 4.20與Min = 2.03。
- R = Max Min = 4.20 2.03 = 2.17
- $k = \lceil 1 + log_2(65) \rceil = \lceil 7.02 \rceil = 8$,因爲 $\frac{R}{k} = 2.17/8 = 0.27$,取h = 0.4。

- Max = 4.20與Min = 2.03。
- \blacksquare R = Max Min = 4.20 2.03 = 2.17°
- $k = \lceil 1 + log_2(65) \rceil = \lceil 7.02 \rceil = 8$,因爲 $\frac{R}{k} = 2.17/8 = 0.27$,取h = 0.4。
- $s_1 = 2.0 < Min = 2.03_{\circ}$

- Max = 4.20與Min = 2.03。
- R = Max Min = 4.20 2.03 = 2.17
- $k = \lceil 1 + log_2(65) \rceil = \lceil 7.02 \rceil = 8$,因爲 $\frac{R}{k} = 2.17/8 = 0.27$,取h = 0.4。
- $s_1 = 2.0 < Min = 2.03$
- 下上組 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1 與上組 界 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4。

- *Max* = 4.20與*Min* = 2.03。
- R = Max Min = 4.20 2.03 = 2.17
- $k = \lceil 1 + log_2(65) \rceil = \lceil 7.02 \rceil = 8$,因爲 $\frac{R}{k} = 2.17/8 = 0.27$,取h = 0.4。
- $s_1 = 2.0 < Min = 2.03$
- 下上組 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1 與上組界 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4。
- 組中點 2.15, 2.45, 2.75, 3.05, 3.35, 3.65, 3.95, 4.25。

- Max = 4.20與Min = 2.03。
- R = Max Min = 4.20 2.03 = 2.17
- $k = \lceil 1 + log_2(65) \rceil = \lceil 7.02 \rceil = 8$,因爲 $\frac{R}{k} = 2.17/8 = 0.27$,取h = 0.4。
- $s_1 = 2.0 < Min = 2.03$
- 下上組 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1 與上組界 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4。
- 組中點 2.15, 2.45, 2.75, 3.05, 3.35, 3.65, 3.95, 4.25。
- 將數據畫記於表 上 和統計。

- Max = 4.20與Min = 2.03。
- R = Max Min = 4.20 2.03 = 2.17
- $k = \lceil 1 + log_2(65) \rceil = \lceil 7.02 \rceil = 8$,因爲 $\frac{R}{k} = 2.17/8 = 0.27$,取h = 0.4。
- $s_1 = 2.0 < Min = 2.03$
- 下上組 2.0, 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1 與上組界 2.3, 2.6, 2.9, 3.2, 3.5, 3.8, 4.1, 4.4。
- 組中點 2.15, 2.45, 2.75, 3.05, 3.35, 3.65, 3.95, 4.25。
- 將數據畫記於表 上 和統計。
- 合計次數是否正確?

- 大数万电报 └─ 史塔基法則 (Sturge's rule)

Table: 次數分配

				累積	相對	累積相對
組別	範圍	組中點	次數	次數	次數(%)	次數(%)
1	2.0~ 2.3					
2	2.3~ 2.6					
3	2.6~ 2.9					
4	2.9~ 3.2					
5	3.2~ 3.5					
6	3.5~3.8					
7	3.8~4.1					
8	4.1~4.4					
合計						

統計資料的另一種分類方式是以時間做爲區分,考慮資料是否與蒐集時間有關聯性。

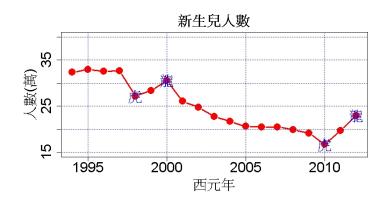


Figure: 1994年以來我國新生兒數的趨勢圖

Figure: 2002至2012年我國經濟成長率之變化趨勢圖